edexcel

Mark Scheme (Results)
November 2014

Pearson Edexcel GCSE
In Mathematics A (1MA0)
Higher (Calculator) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

November 2014
Publications Code UG040311
All the material in this publication is copyright
© Pearson Education Ltd 2014

NOTES ON MARKI NG PRI NCI PLES

All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

2 Mark schemes should be applied positively.
3 All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Note that in some cases a correct answer alone will not score marks unless supported by working; these situations are made clear in the mark scheme. Examiners should be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

5 Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
6 Mark schemes will award marks for the quality of written communication (QWC).
The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear Comprehension and meaning is clear by using correct notation and labelling conventions.
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Partial answers shown (usually indicated in the ms by brackets) can be awarded the method mark associated with it (implied).
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks; transcription errors may also gain some credit. Send any such responses to review for the Team Leader to consider.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.
$9 \quad$ I gnoring subsequent work
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.

Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

14 The detailed notes in the mark scheme, and in practice/training material for examiners, should be taken as precedents over the above notes

```
Guidance on the use of codes within this mark scheme
M1 - method mark for appropriate method in the context of the question
A1 - accuracy mark
B1 - Working mark
C1 - communication mark
QWC - quality of written communication
oe - or equivalent
cao - correct answer only
ft - follow through
sc - special case
dep - dependent (on a previous mark or conclusion)
indep - independent
isw - ignore subsequent working
```

PAPER: 1MA0_2H					
		Working	Answer	Mark	Notes
1	(a) (b)		360 25	2	M1 $30 \div 10(=3)$ or $120 \div 10(=12)$ or $120+120+120$ oe A1 cao M1 for $\frac{750}{300}(=2.5)$ oe A1 cao
2	(a) (b)		Relationship $6.1 \text { to } 6.4$	1 2	B1 for description of relationship eg "As the length of the pine cone increases the width increases" oe (accept positive correlation) M1 for a single straight line segment with positive gradient that could be used as a line of best fit or a vertical line from 8.4 or a point at $(8.4, y)$ where y is from 6.1 to 6.4 A1 for given answer in the range 6.1 to 6.4
3	(a) (b) (c) (d) (e)		$\begin{gathered} \hline-1 \\ 3(x+2) \\ 7 y-16 \\ m^{8} \\ p^{4} \end{gathered}$	2	M1 for $3 \times-5+7 \times 2$ A1 cao B1 cao M1 for intention to expand a bracket eg $5 y-10$ or $2 y-6$ A1 cao B1 cao B1 cao

PAPER: 1MA0_2H					
	ion	Working	Answer	Mark	Notes
4	(a) (b)		Correct shape Translation by $\binom{4}{-1}$	2	B2 cao (B1 for shape in the correct orientation below the line $y=x$ or for 2 vertices correct) with vertices at $(2,1),(4,1),(4,0),(3,0)$ B1 for translation B1 for $\binom{4}{-1}$ NB : B 0 if more than one transformation given
5	(a) (b)		0.2 20	2	M1 for 1-0.16-0.4-0.24 oe A1 cao M1 for 0.16×125 oe A1 cao
6			2.10 euros or $£ 1.81$	3	M1 for 2.5×1.16 (= 2.9) M1 (dep) for $5-" 2.9 "(=2.1)$ A1 for 2.1(0) euros OR M1 for $5 \div 1.16$ (= 4.31...) M1 (dep) for "4.31" - 2.50 (=1.81) A1 for $£ 1.81$
7	(a) *(b)		$4 n-2$ Yes + reason	2	B2 for $4 n-2$ oe (B1 for $4 n+k, k \neq-2$ or k is absent, or $n=4 n-2$) C 1 ft from (a) for decision and explanation, e.g. equating 86 with nth term and "Yes, its the 22nd term" or continuing the sequence up to 86 and "Yes, 86 is in the sequence" oe

PAPER: 1MA0_2H					
Question		Working	Answer	Mark	Notes
8			Polygon drawn	2	B2 for fully correct frequency polygon - points plotted at the midpoint (B1 for all points plotted accurately but not joined with straight line segments) or all points plotted accurately and joined with last joined to first to make a polygon or all points at the correct heights and consistently within or at the ends of the intervals and joined (can include joining last to first to make a polygon) NB: ignore parts of graph drawn to the left of the $1^{\text {st }}$ point or the right of the last point; ignore any histograms drawn.

PAPER: 1MA0_2H					
Question		Working	Answer	Mark	Notes
*9			Decision (No the attendance target was not met)	3	M1 for attempting to find total number of students or 1210 seen M1 for $\frac{{ }^{\prime} 1092^{\prime}}{{ }^{\prime} 1210^{\prime}} \times 100$ oe or $\frac{' 118 '}{1210^{\prime}} \times 100$ oe C1 for correct decision with 90.(2479...) or correct decision with 6 and 9.(752...) OR M1 for attempting to find total number of students or 1210 seen M1 for $\frac{94}{100} \times$ ' 1210 ' oe C1 for correct decision with 1137 (.4) and 1092 or correct decision with 72(.6) and 118 OR M1 for a correct $\%$ method for one year, e.g. $\frac{192}{208} \times 100$ or $\frac{94}{100} \times 208$ M1 for a correct $\%$ method for each year C1 for correct decision with 92.(30...), 90.(87...), 89.(31...), 89.(27...), 89.(91...) or 195(.5..), 226.(9...), 246.(2..), 245.(3...), 223.(7...)

PAP	ER: 1M	0_2									
Question		Working							Answer	Mark	Notes
12		-2 -1 0 1 2 3 -7 -5 -3 -1 1 3							Straight line from $(-2,-7)$ to $(3,3)$	4	(Table of values)
									C1 for axes scaled and labelled		
									M1 for at least 2 correct attempts to find points by substituting values		
									M1 ft for plotting at least 2 of their points (any points plotted from their table must be plotted correctly)		
									A1 for correct line between $x=-2$ and $x=3$		
									(No table of values)		
									C1 for axes scaled and labelled		
									M1 for at least 2 correct points with no more than 2 incorrect points M1 for at least 2 correct points (and no incorrect points) plotted OR		
									line segment of $y=2 x-3$ drawn		
									A1 for correct line between $x=-2$ and $x=3$		
									(Use of $\boldsymbol{y}=\mathbf{m x}+\mathrm{c}$)		
									C1 for axes scaled and labelled		
									M1 for line drawn with gradient of 2 OR line drawn with a y intercept of -3		
									M1 for line drawn with gradient of 2 AND with a y intercept of -3 A1 for correct line between $x=-2$ and $x=3$		
									A1 for correct line between $x=-2$ and $x=3$		
									SC : B2 for the correct line from $x=0$ to $x=3$		

PAPER: 1MA0_2H					
Question		Working	Answer	Mark	Notes
15		$\begin{aligned} & 3 x+y=30 \\ & x+3 y=22 \end{aligned}$	$\begin{aligned} & 8.50 \\ & 4.50 \end{aligned}$	4	M1 for forming two algebraic equations M1 for a correct process to eliminate one variable (condone one arithmetic error) M1 (dep) for substituting found value in one of the equations or appropriate method after starting again (condone one arithmetic error) A1 for 8.5(0) and 4.5(0)
16		$\begin{aligned} & A C^{2}=5^{2}+3^{2} \\ & A C=\sqrt{25+9}(=5.83) \\ & \frac{5}{5.83}=\frac{D B}{3} \\ & D B=\frac{5}{5.83} \times 3(=2.57) \\ & 5+3+5.83+2.57= \\ & \mathbf{O R} \\ & A C=\sqrt{25+9}(=5.83) \\ & \tan A=\frac{3}{5} \\ & A=30.96 \\ & \sin 30.96=\frac{D B}{5} \\ & D B=5 \times \sin 30.96(=2.57) \\ & 5+3+5.83+2.57= \end{aligned}$	16.4	5	M1 for $\left(A C^{2}\right)=5^{2}+3^{2}=34$) M1 for $\sqrt{25+9}$ or $\sqrt{34}(=5.83)$ M1 for $\frac{5}{{ }^{5.83 '}}=\frac{D B}{3}$ or $D B \times A C=5 \times 3$ M1 for $(D B=) \frac{5}{15.83^{\prime}} \times 3$ A1 for 16.4 to 16.41 OR M1 for $\left(A C^{2}\right)=5^{2}+3^{2}(=34)$ M1 for $\sqrt{25+9}$ or $\sqrt{34}(=5.83)$ M1 for using a correct trig ratio in an attempt to find angle A or angle C, e.g. $\tan A=\frac{3}{5}, \sin A=\frac{3}{15.83^{\prime}}, \cos C=\frac{3}{' 5.83^{\prime}}$ M1 for using $D B$ in a a correct trig ratio, e.g. $\sin ^{‘} 30.96^{\prime}=\frac{D B}{5}$ A1 for 16.4 to 16.41

PAPER: 1MA0_2H					
Question		Working	Answer	Mark	Notes
17			35°	4	M1 for $A B C=90$ M1 for $(A C B=) 180-90-25(=65)$ M1 for $(D B C=) 180-‘ 65$ ' $-80(=35)$ A1 cao supported by working OR M1 for $(A O B=) 180-2 \times 25(=130)$ M1 for $(A D B=) 130 \div 2(=65)$ M1 for $(D A C=) 180-65-80$ A1 cao supported by working.
18	(a) (b)	$\begin{aligned} & 5 \times 8=40 \\ & 12.5 \times 15=187.5 \\ & 17.5 \times 11=192.5 \\ & 25 \times 10=250 \\ & 40 \times 6=240 \\ & 910 \div 50=18.2 \\ & 0 \leq t<10 \text { fd } 0.8 \\ & 10 \leq t<15 \text { fd } 3 \\ & 15 \leq t<20 \text { fd } 2.2 \\ & 20 \leq t<30 \text { fd } 1 \\ & 30 \leq t<50 \text { fd } 0.3 \end{aligned}$	18.2 Correct histogram	4 3	M1 for $f x$ consistently within interval including ends (allow 1 error) M1 consistently using appropriate midpoints M1 (dep on first M1) for $\Sigma f x \div \Sigma f$ A1 for 18.2 cao B3 fully correct histogram with vertical axis correctly scaled. (B2 for 4 correct blocks or 5 correct blocks with incorrect or no scale) (B1 for 2 correct blocks of different widths or any 3 correct blocks or correct FD values for at least 3 frequencies) eg fd of $0.8,3,2.2,1$, 0.3
19	(a) (b)		$\begin{gathered} 0.3 \\ 0.3,0.7,0.3 \\ \\ 0.42 \end{gathered}$	2 3	B1 for 0.3 as first spin oe B1 for $0.3,0.7,0.3$ in correct positions for second spin oe M1 for ' 0.3 ' $\times{ }^{‘} 0.7$ ' or $0.7 \times{ }^{\prime} 0.3$ ' $(=0.21)$ M1 for ' 0.3 ' $\times{ }^{‘} 0.7+0.7 \times{ }^{`} 0.3$ (OR M2 for $1-0.7^{2}-0.3^{2}$) A1 for 0.42 oe
PAPER: 1MA0_2H					
:---:	:---:	:---:	:---:	:---:	:---:
Question		Working	Answer	Mark	Notes
20			1.85 and - 0.180	3	M1 for $\frac{--5 \pm \sqrt{-5^{2}-4 \times 3 \times-1}}{2 \times 3}$ (condone one sign error) M1 for $\frac{5 \pm \sqrt{37}}{6}(=1.8$ to1.85 or -0.18 to -0.181$)$ A1 for answers in the ranges 1.8 to 1.85 , and -0.18 to -0.181
21			8.52	5	M1 for $\frac{B D}{\sin 45}=\frac{7.4}{\sin 80}$ oe M1 for $(B D=) \frac{7.4}{\sin 80} \times \sin 45(=5.3133$.. $)$ M1 for $5.8^{2}+{ }^{\prime} 5.31^{\prime 2}-2 \times 5.8 \times{ }^{\prime} 5.31$ ' $\cos 100$ M1 (dep) for correct order of evaluation or $72.5(73 \ldots$) A1 for $8.51-8.52$ OR M1 for $\frac{A D}{\sin (180-80-45)}=\frac{7.4}{\sin 80}$ oe M1 for $(A D=) \frac{7.4}{\sin 80} \times \sin (180-80-45)(=6.15 \ldots)$ M1 for $7.4^{2}+\left({ }^{(} 6.15{ }^{\prime}+5.8\right)^{2}-2 \times 7.4 \times\left({ }^{\prime} 6.15{ }^{\prime}+5.8\right) \times \cos 45$ M1 (dep) for correct order of evaluation or 72.5(7398...) A1 for $8.51-8.52$
PAPER: 1MA0_2H					
:---:	:---:	:---:	:---:	:---:	:---:
Question		Working	Answer	Mark	Notes
22	(a) (b)	$\frac{(2 x-3)(x-1)}{(x+6)(x-1)}$ $\begin{aligned} & \frac{m b-t v}{v b}=\frac{m-t}{R} \\ & m b R-t v R=m v b-t v b \\ & m b R-m v b=t v R-t v b \\ & m(b R-v b)=t v R-t v b \end{aligned}$ OR $\begin{aligned} & \frac{m}{v}-\frac{t}{b}=\frac{m}{R}-\frac{t}{R} \\ & \frac{m}{v}-\frac{m}{R}=\frac{t}{b}-\frac{t}{R} \\ & \frac{m R-m v}{v R}=\frac{t R-t b}{b R} \\ & \frac{m(R-v)}{v R}=\frac{t R-t b}{b R} \end{aligned}$	$\frac{2 x-3}{x+6}$ $m=\frac{t v(R-b)}{b(R-v)}$	3 4	M1 for $(2 x-3)(x-1)$ M1 for $(x+6)(x-1)$ A1 cao M1 for putting LHS over a common denominator with at least one correct numerator (ignore signs) or for showing an intention to multiply each term on both sides by R or v or b M1 for rearranging correctly to isolate terms in m M1 for factorising with common factor m from 2 terms A1 for $m=\frac{t v(R-b)}{b(R-v)}$ oe
*23			Yes, average speed could have been as high as 80.622 ...	5	B1 for 4535 or 4534.999 ... or 202.5 M1 for 4535 (oe) $\div 202.5$ M1 for $\times 3600$ and $\div 1000$ A1 for 80.622 ... C1 (dep on first M1) for correct conclusion from their calculations

Modifications to the mark scheme for Modified Large Print (MLP) papers.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below
Angles: ± 5 은
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA0_2H			
Question		Modification	Notes
2	(b)	2 cm grid 8.4 changed to 8.5	
3	(b)	MLP - x changed to y	
4	(a) (b)	2 cm grid 2 cm grid	
8		Table frequencies changed: 251025155 Grid - X axis 3 cm for 5 with an intermediate line Y axis 1.5 cm for 5	
11		No model - table top only drawn showing the diameter	
12		2 cm grid Braille axes put on grid and labelled	

